If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-10a+18=0
a = 1; b = -10; c = +18;
Δ = b2-4ac
Δ = -102-4·1·18
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{7}}{2*1}=\frac{10-2\sqrt{7}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{7}}{2*1}=\frac{10+2\sqrt{7}}{2} $
| -r+11=15 | | 68+73+3y=180 | | 2x+5x+5=19 | | 1/2r-3=39(4-3/2r) | | 10p-7p=3 | | u/4-17=18 | | 68+73+3y=141 | | t+143=557 | | 2v-v+3v-v+4v=7 | | ∠A=6x−48∘∠B=4x+38∘ | | 5/9+p=31/18 | | -6=-(1-4a)-6a | | f-19=297 | | x/20+20=40 | | 3(a-5)-2=1 | | h+1.16=-2.34 | | c+273=893 | | -7=-5x+7(2x+8) | | A=6x+18B=x+93 | | 1,5x-1,365x-1500=0 | | X²+20x+100=64 | | x^2-2x-1,73=0 | | (7)=3x+2 | | 2x+17−x+17=−4 | | 16c+18–17=17 | | x^2+2x+1,73=0 | | ∠A=6x+18∠B=x+93 | | k-52=217 | | -7/4u=42 | | 5(3x+7)=20-2(x=1) | | 9y-2=13y+34 | | -5(4t-4)+3t=6t-8 |